U6 Chapter 4

Binomial Expansion

Chapter Overview

1. Binomial Series Recap

2. Binomial Expansion for negative/fractional powers
3. Constant is not $1:(a+b)^{n}$

4. Using Partial Fractions

4	4.1	Understand and use the binomial expansion of $(a+b x)^{x}$ for positive integer $n ;$ the notations $n!$ and series n and C_{r} link to binomial probabilities.	Use of Pascal's triangle. Relation between binomial coefficients.
Also be aware of alternative notations			
such as $\binom{n}{r}$ and ${ }^{n} C_{r}$			
Extend to any rational n, including its use for approximation; be aware that the expansion is valid for $\left\lvert\, \frac{b x}{a}\right.$	Considered further in Paper 3 Section 4.1. May be used with the expansion of rational functions by decomposition into partial fractions		
May be asked to comment on the range of not required) validity.			

The Binomial Series: Recap

Recall that if n is a positive integer

$$
(a+b)^{n}=a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\cdots
$$

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots+{ }^{n} C_{r} x^{n}
$$

Also $(a+b)^{n}=a^{n}\left(1+\frac{b}{a}\right)^{n}$

Examples

1. Expand $(1+x)^{11}$ up to and including the term in x^{3}
2. Expand $(1-2 x)^{8}$ up to and including the term in x^{3}

Binomial Expansion for Negative/ Fractional Powers

\square

Example

1. Use the binomial expansion to find the first four terms of $\frac{1}{1+x}$
2. Use the binomial expansion to find the first four terms of $\sqrt{1-3 x}$

An infinite expansion $(1+x)^{n}$ is valid if $|x|<1$

Quickfire Examples:

1. Expansion of $(1+2 x)^{-1}$ valid if:
2. Expansion of $(1-x)^{-2}$ valid if:
3. Expansion of $\left(1+\frac{1}{4} x\right)^{\frac{1}{2}}$ valid if:
4. Expansion of $\left(1-\frac{2}{3} x\right)^{-1}$ valid if:

Combining Expansions

(a) Use the binomial expansion to show that

$$
\begin{equation*}
\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1+x+\frac{1}{2} x^{2}, \quad|x|<1 \tag{6}
\end{equation*}
$$

Test Your Understanding

1. Find the binomial expansion of $\frac{1}{(1+4 x)^{2}}$ up to an including the term in x^{3}. State the values of x for which the expansion is valid.
2.

(a) Find the binomial expansion of

$$
\sqrt{ }(1-8 x), \quad|x|<\frac{1}{8}
$$

in ascending powers of x up to and including the term in x^{3}, simplifying each term.
(6)
(b) Show that, when $x=\frac{1}{100}$, the exact value of $\sqrt{ }(1-8 x)$ is $\frac{\sqrt{ } 23}{5}$.
(c) Substitute $x=\frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{ } 23$. Give your answer to 5 decimal places.

Extension

[STEP I 2011 Q6] Use the binomial expansion to show that the coefficient of x^{r} in the expansion of $(1-x)^{-3}$ is $\frac{1}{2}(r+1)(r+2)$.
(i) Show that the coefficient of x^{r} in the expansion of $\frac{1-x+2 x^{2}}{(1-x)^{3}}$ is $r^{2}+1$ and hence find the sum of the series

$$
1+\frac{2}{2}+\frac{5}{4}+\frac{10}{8}+\frac{17}{16}+\frac{26}{32}+\frac{37}{64}+\cdots
$$

(ii) Find the sum of the series

$$
1+2+\frac{9}{4}+2+\frac{25}{16}+\frac{9}{8}+\frac{49}{64}
$$

